dans

Science et tolérance : théorie…


(France Catholique – N° 2327 – 01 novembre 1991)

Texte emprunté au site de France CatholiqueMise à jour en 2020 par les excellentes notes de Jean-Pierre Rospars. Les chroniques cités dans ces notes se trouvent sur le même site.

La trilogie de Roger Penrose sur l’esprit humain

« À cette question, la science répond que… »

Quand on lit cette phrase tranchante, il est prudent de se comporter comme les savants eux-mêmes : premièrement, on vérifie le nom de l’auteur et la date à laquelle il a prononcé son verdict ; deuxièmement, on rectifie : « À telle date, tel auteur écrit que la science – c’est-à-dire une majorité de savants – croit que… »

Ce n’est pas suffisant, car l’auteur de la phrase peut attribuer à « une majorité de savants » son opinion préférée ; ou encore, peut-être, est-il mal renseigné. En réalité, les auteurs qui attribuent à « la science » des verdicts définitifs et absolus montrent surtout qu’ils n’ont pas réfléchi assez aux domaines de validité de chaque science.

Le mathématicien anglais Roger Penrose, actuellement professeur à l’Université d’Oxford, classe les théories scientifiques en trois catégories : les théories magnifiques (superb), les théories utiles (useful) et les théories d’essai (tentative) (R. Penrose : The Emperor’s New Mind. Oxford Univers. Press, Oxford, 1990.) [].

Il qualifie de « magnifiques » les seules théories dont le domaine de validité est très étendu, et l’on n’est pas surpris de constater qu’elles sont en petit nombre. En voici quelques exemples, munis des chiffres mesurant leur domaine, donc leur « magnificence » : la géométrie d’Euclide. Celle que l’on apprend au lycée à partir de la 4ème, tellement proche de la réalité que pour la trouver physiquement erronée sur une longueur d’un mètre, il faut descendre dans la précision jusqu’au diamètre d’un atome d’hydrogène. Ou si l’on préfère, sur la distance Paris-Moscou, il faut considérer l’épaisseur d’un cheveu. Si l’on mesure la distance Paris-Moscou à l’épaisseur d’un cheveu près, on commence à s’apercevoir que le monde physique n’est pas « euclidien ». Mais vraiment, il l’est presque ! Et la géométrie d’Euclide, exposée il y a 23 siècles par le seul raisonnement (appuyé de quelques dessins tracés dans le sable, se rappeler les derniers moments d’Archimède) peut être sans exagération appelée « magnifique ».

Autre théorie « magnifique » selon les critères de Penrose : l’électromagnétisme de Maxwell, dont le champ d’application se mesure, dit-il (et prenons notre souffle), au rapport d’une partie sur plusieurs millions de millions de millions de millions de millions de millions, soit (comptons les millions) un million six fois multiplié par lui-même. Vraiment magnifique, n’est-il pas ? Comme dirait Penrose.

Avant de poursuivre, prenons la précaution recommandée aux premières lignes de cet article, qui est Penrose et à quelle date parle-t-il ainsi ?

J’ai dit que ce savant est professeur à Oxford, mais même en ce très distingué Haut-lieu de la pensée on trouve quelques messieurs tenus par l’ensemble de leurs collègues pour d’aimables rêveurs. On peut, semble-t-il (me semble-t-il au vu de ce que je lis), admettre cependant que Penrose est un des savants les plus fiables du moment. Il est entre autres choses, le créateur d’une théorie mathématique respectée qu’il classe lui-même dans la catégorie des Théories d’essai (la théorie des twisteurs) classement que Martin Gardner, l’un des savants les plus critiques de langue anglaise et fameux démystificateur, juge d’une injuste modestie []. Preuve matérielle que Penrose n’est pas un rêveur, il a inventé des systèmes de carrelages (l’art d’assembler des formes géométriques inédites dans une salle de bains) d’une diabolique ingéniosité, qui ont fait couler des flots d’encre et rapportent beaucoup d’argent []. Quant au livre dont je parle, il a été publié il y a moins de deux ans [].

Le fractal

Parmi les autres théories « magnifiques » de Penrose, il en est une dont le lecteur aura sans doute entendu parler, c’est celle des fractals, très récente puisqu’elle s’est développée dans les années 80. Très spectaculaire aussi ; je regrette qu’il ne soit guère possible d’en publier des images dans un journal. Ses conséquences philosophiques sont peut-être inépuisables.

Un fractal est d’abord une fonction mathématique représentable sur un graphique, du moins dans ses premiers développements (Le fameux problème de la baignoire fournit un exemple de fonction : le temps mis pour la remplir est une fonction du débit du robinet (ici une fonction inverse, que l’on peut compliquer en réfléchissant). Quand on regarde le graphique, on voit donc une image qui peut ressembler (c’est un cas particulier de fractal) à une tache d’encre éclaboussée.

Munissons-nous d’une loupe et regardons une éclaboussure sur le bord de la tache. On découvre que l’éclaboussure est elle-même éclaboussée. Changeons la loupe contre un microscope et voyons à quoi ressemble l’éclaboussure de cette éclaboussure : étrange, on la voit aussi éclaboussée que les précédentes. Choisissons la plus petite de ces éclaboussures de troisième génération : on retombe sur de nouvelles éclaboussures ! Multiplions le grossissement par dix, cent, mille : toujours on retrouve la même lancinante étrangeté quel que soit le grossissement, et l’étude de la fonction montre qu’il en est ainsi à l’infini. Il est impossible d’atteindre un grossissement, même théorique et dépassant les possibilités de l’optique, où l’on trouve un bord de tache sans éclaboussure.

Plus on s’enfonce dans l’infiniment petit et plus se répètent les mêmes dessins, toujours parents et reconnaissables, quoique toujours différents. C’est comme un rêve, une féerie sans fin et sans fond, indéfiniment renouvelée et qu’on ne se lasse pas de contempler. C’est un tableau sans échelle de grandeur, en complète contradiction avec et que l’on voit dans la nature, du moins la nature des peintres et des physiciens.

Les « indécidables »

Maintenant on peut interroger la fonction et tenter de lui faire dire si tel point de la surface est dans la tache ou hors de la tache. On trouve alors des propriétés qui semblent en contradiction avec la logique commune : il y a bien des points dont la fonction peut nous dire (après des calculs plus ou moins laborieux) s’ils sont dans la tache ou en dehors, mais il y a toujours aussi une infinité de cas où il est impossible de répondre, car cela supposerait l’ordinateur arrivé au terme d’une infinité de calculs.

On reconnaît là un air de parenté avec le théorème le plus fameux du 20e siècle, découvert par l’Autrichien Kurt Gödel en 1931, à l’âge de 25 ans : quel que soit le système de raisonnement que l’on s’accorde, on peut toujours énoncer des propositions qui dans ce cadre-là ne sont ni vraie ni fausses (d’où le mot « indécidable »). Si l’on change de cadre, d’autres indécidables apparaissent [].

Quand Mandelbrot, dont le nom est associé aux fractals, vit pour la première fois sortir de son ordinateur l’image (ou plutôt évidemment le commencement de l’image) dont j’ai esquissé plus haut l’insondable complication, il crut la machine détraquée. L’ordinateur avait été programmé pour pointer sur un graphique la représentation d’une fonction apparemment innocente (elle ne comporte que deux lettres, le chiffre 2 en exposant, et le signe →. Il est vrai que les lettres représentent des nombres dits « complexes », mais on apprend maintenant les nombres complexes, sauf erreur, dès la terminale C).

Mandelbrot ne découvrit pas vraiment les fractals par hasard, il soupçonnait quelque chose de pas banal dans sa fonction, mais ce qui en sortit dépassait toute attente. L’ordinateur n’était pas dérangé, il imprimait seulement pour la première fois les formes d’une image sans échelle de grandeur.

Quand Pascal nous effraie avec ses deux infinis, c’est par un raisonnement. Le microscope ne permet pas de retrouver dans l’infiniment petit l’image du monde ordinaire.

Au contraire le fractal ne montre pas qu’à l’intelligence, mais bien aussi à l’imagination et à l’œil ce à quoi l’esprit se refuse. Plus on grossit et plus c’est la même chose, pas exactement toutefois, toujours avec de l’inattendu, mais familier quand même. Il n’y a rien de tel dans le monde où nous vivons, où tout est, au moins approximativement, commensurable. Il y a du plus petit, du plus grand, de l’égal. L’œil, l’imagination même, le rêve cherchent en vain du plus petit qui soit identique à du plus grand. Cependant feuilletez un album de fractals (Chapitre 3 du livre de Penrose. Ou encore : Peitgen et Saupe : The Science of Fractal Images, Springer-Verlag. Berlin, 1988), instantanément vous voyez et comprenez que les mots « plus grand » et « plus petit » peuvent n’avoir aucun sens [].

Au-delà de la science

Suivre les auteurs actuels dans ces labyrinthes de la pensée n’est sans doute pas indispensable pour survivre dans ce monde ni pour accomplir sa destinée dans l’autre. Ce n’est qu’une activité bénéfique propre à nous mettre en garde contre le dogmatisme intellectuel, qui toujours finit en dogmatisme universel et en violence. Il paraît que nous entrons dans une ère nouvelle que personne encore n’a bien définie, mais qui déjà porte un nom : le nouvel ordre mondial. Il se traduit jusqu’ici surtout par du désordre, mais je doute qu’il se trouve quelqu’un pour regretter l’ordre antérieur – pas si ancien, deux ans ! – caractérisé d’abord par l’intolérance et la paix des barbelés. Nous ne savons pas où nous allons, mais l’incertitude n’est-elle pas préférable à l’embrigadement forcé ? A quoi sert la liberté promise par l’Écriture. « Vous connaîtrez la vérité et la vérité vous rendra libres », si elle reste le privilège du plus fort appuyé sur une foule d’esclaves ? []

Il n’est pas question ici de vouloir traduire la science (provisoire, changeante, progressive) en impératifs politiques et encore moins en morale. Cela, c’était l’ordre ancien, caractérisé d’abord, rappelez-vous, par le totalitarisme intellectuel. Eh bien, le totalitarisme intellectuel est une vieille lune, et il faut que cela se sache. Le physicien américain Wheeler, célèbre par le nombre d’esprits éminents qui ont été ses élèves et par le tour frappant qu’il donne à ses aphorismes, a notamment produit celui-ci, souvent cité, ne visant, rappelons-le, que la physique « Il n’y a pas de loi sauf qu’il n’y a pas de loi » (There is no law except that there is no law) [].

Le terrorisme intellectuel qui a longtemps justifié les mains sales, les œufs cassés pour faire l’omelette, l’enfermement dans le poulailler sous prétexte du renard et autres beaux sophismes [], est mort à sa source : la science. Non par la mort de la science, mais par ses extraordinaires progrès. La fin du XXe siècle a paradoxalement « donné raison » à la plus controversée des Pensées de Pascal : « Rien n’est plus conforme à la raison que le désaveu de la raison ». Pascal ne dit pas que l’irrationalisme, la superstition, l’obscurantisme, etc., dont ont voulu le noircir ses réfutateurs, sont le substitut adéquat de la raison, bien au contraire : il dit, et c’est cela que la science actuelle confirme, que l’exercice sans faille de la raison conduit à reconnaître que certaines choses essentielles à l’homme ne relèvent pas de la raison au sens strict. Ne le voyons-nous pas de nos yeux ? []

Entre la machine et Platon

Nous n’avons que jeté un bref coup d’œil sur quelques idées de Penrose. L’ensemble de son livre vise à démontrer (et me semble-t-il démontre avec clarté) que l’intelligence artificielle (I.A.) que veulent produire les informaticiens produira sûrement de surprenantes nouveautés, mais jamais la conscience, qui suppose un monde différent de celui de la physique. Étant mathématicien, il incline à penser que ce monde différent est celui des idées platoniciennes. Ces « idées », dit-il, forment l’« ensemble de ce qui est nécessairement vrai » []. La conscience, dit-il encore (je ne le cite pas littéralement) est le point de contact entre le monde que nous appelons physique et celui des idées, qui existe indépendamment.

Cependant, dit-il encore, la conscience ne peut se réduire à ces deux mondes. Il y a dans l’activité de la conscience vivante des traits qui, nécessairement sont étrangers à la rigueur de la science et des idées « nécessairement vraies ». Il le montre dans la nature propre de branches entières des mathématiques qui ne sont pas, comme il le dit, « récursives », dont l’existence ne peut s’expliquer par un algorithme (c’est-à-dire dont on ne peut retrouver l’origine en faisant jouer à l’envers la loi qui les a produites). Ces branches impliquent l’activité volontaire, l’intuition finalisée du chercheur [].

Admettons que ce sont là des idées difficiles à résumer correctement dans un petit article. Je souhaite que ce livre exceptionnellement profond et novateur du Pr Penrose soit bientôt traduit et qu’il enrichisse la bibliothèque de tous ceux qui s’interrogent sur la nature de l’homme, à côté des plus grands livres de philosophie. Comme Martin Gardner, « je crois qu’il prendra place parmi les classiques. » Émouvante en est la dédicace à « ma chère mère, qui n’a pas vécu tout à fait assez pour le lire ». Je ne crois pas que le chagrin d’un savant anglais soit jamais reproductible dans une machine.

Aimé MICHEL

________________________________________________________________________



Source link

Qu'en pensez-vous?

0 0 votes
Article Rating
S’abonner
Notification pour
guest
0 Commentaires
Commentaires en ligne
Afficher tous les commentaires

Rédiger par Revue 3e millenaire

le monde

Les femmes arrivent